

A record-high Ocean Bottom Pressure in the South Pacific observed by GRACE

<u>Carmen Boening</u>¹, Tong Lee¹, Victor Zlotnicki¹

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

Satellite Data

 $h_{total} = h_{steric} + h_{mass}$

wind forcing: τ

Record Anomaly

GRACE observed recordhigh ocean bottom pressure anomaly in Nov. 2009 in the South Pacific

Scientific questions:

- What is the nature of the OBP/SSH changes?
- What caused the record-high anomaly?

11/12/2010

Changes due to mass vs. density

Agreement indicates barotropic (depth-independent) mass convergence is the primary cause for the SSH increase.

Role of Forcing (ASCAT)

11/12/2010

Oceanic response to wind forcing

Relation among SSH (η) & atm. wind (τ) & pressure (P_a) & friction (r) & topography (H)

$$\frac{\partial}{\partial t}\nabla = \frac{\partial \eta}{\partial t} + \beta \frac{\partial \eta}{\partial x} - \frac{f}{H} \left(\frac{\partial \eta}{\partial x} \frac{\partial H}{\partial y} - \frac{\partial \eta}{\partial y} \frac{\partial H}{\partial x} \right) + \nabla \cdot \left(\frac{rg}{fH} \nabla \eta \right) = \frac{f}{\rho g} \nabla \times \frac{\tau}{H} - \frac{c^2}{gH\rho} \nabla \theta$$

relative vorticity & vortex stretching

planetary effect topography effect

damping

wind & pres. forcing

Reconstruction of sea level anomalies using <u>ASCAT</u> data agrees well with

observations.

Dominant dynamical balance

$$\beta \frac{\partial \eta}{\partial x} - \left(\frac{f}{H} \left(\frac{\partial \eta}{\partial x} \frac{\partial H}{\partial y} - \frac{\partial \eta}{\partial y} \frac{\partial H}{\partial x} \right) + \left(\nabla \cdot \left(\frac{rg}{fH} \nabla \eta \right) \right) \neq \frac{f}{\rho g} \nabla \times \frac{\tau}{H}$$

- Overall: <u>bottom</u>
 <u>topography</u>
 important
- Late '09 record —
 anomaly: balance
 between β-term
 and wind forcing
 + topography
 effect modified
 by friction.

Schematics of

Wind forcing

Topographic effect

11/12/2010

Teleconnection and Impact

- Possible role of the 2009-10 El Nino in causing the extreme & persistent SP anticyclone (atmospheric linkage)
- Potential impact on Southern
 Ocean and Antarctica due to
 diversion of circumpolar westerly
 wind and the Antarctic
 Circumpolar Current (oceanic
 connection).

Picture from Yuan (2004)

Conclusions

- A demonstration of GRACE's capability in capturing oceanic features.
- GRACE recorded an extreme OBP anomaly in the S. Pacific in 2009.
- GRACE helps understand a similar signal in altimeter SSH data: the SSH signal is due to mass change.
- The OBP signal is associated with a strong & persistent anticyclone.
- The re-enforcement of the topographic effect by the wind stress curl associated with the strong anticyclone is the main reason for the record increase of OBP in late 2009.
- Possible connection to 2009/10 El Nino and impacts on the Antarctic Circumpolar Current.

Thank you!